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ABSTRACT

This numerical study isolates some of the experimentally interesting

properties of the large amplitude spatially localized electric fields in

the Langmuir frequency range which are described by the non-linear

Schrodinger equation with the full exponential nonlinearity retained. The

steady state eigenvalues and wavefunctions are calculated and their properties

compared with the small amplitude soliton solutions. A variety of time

dependent effects are investigated, in both bounded and unbounded geometries.

Some of these are: the evolution of initial standing waves; the collisional

properties; the pumping of stationary, moving, and colliding solitons by a

uniform external electric field.
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I. INTRODUCTION

Over the past few years the soliton concept’ has emerged as one of the

fundamental entities in the description of the physics of strongly inter-

acting systems. In many areas of study (e.g., field theory, solid state,

applied mathematics) the principal interest in solitons can be attributed to

• the remarkable elastic scattering properties of these objects. Recently, in

plasma physics there has been an intensive effort2’8 devoted to the investi-

gation of Langmuir solitons. While the scattering properties of such solitons

in plasmas are of great theoretical interest, in practice this aspect has not

been the major motivating reason for their study. The growing interest in

the properties and generation of Langmuir solitons has emerged out of the

realization that such entities constitute intense localized electric fields

which can interact strongly with the plasma particles. Accordingly, the

presence of such solitons in a plasma can modify the zero order quantities

of the medium (density, temperature, flow velocity) in a significant manner.

• In recent experiments9 1 1  in which soliton-like structures in the Langmuir

frequency range have been observed, two important points have been ellucidated :

1) the generation and behavior of the localized fields is intimately related

to the presence of an external energy source (e.g., electron beam, quasi-

electrostatic pump, electromagnetic radiation), 2) due to the external pumping,

the energy density of these fields can become comparable to the kinetic energy

density of the plasma; thus the associated density depressions or cavities can

attain levels as large as 20 to 50 percent of the background density. Accord-

ingly, these findings suggest two research topics which deserve considerable

attention. Namely, the interaction and generation of Langmuir solitons in the

presence of an external pump, and the study of such processes when the

amplitude of the electric field is sufficiently large so that the usual cubic 
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nonlinearity description of the Langmuir soliton is not appropriate. The

present study deals with these issues.

The present investigation aims at isolating within the simplest mod,el

some of the experimentally interesting properties associated with the

generation, scattering, and response to external pumping, of large amplitude

Langmuir solitons. Specifically, the mathematical model used consists of

the nonlinear Schrodinger equation in whi t’ the full exponential nonlinearity

is retained, i.e., the plasma density n is given by n=n0 exp[_1E12/8wnoTe]

where, no is the zero order plasma density, E refers to the high frequency

electric field, and Te is the electron temperature. Both, the homogeneous

and inhomogeneous (i.e., with a Source) versions of this equation are

investigated numerically in an idealized one dimensional plasma slab. The

identification of the principal features of this simple model are intended to

aid and stimulate the search for localized fields in the Langmuir frequency

range.

Some of the interesting properties discussed in the present report are:

the steady state eigenvalues and wavefunctions of large amplitude Langmuir

solitons and their relationship to small amplitude solitons, the time

evolution of initial standing waves in a bounded slab into large amplitude

solitons, the collisional properties of large amplitude solitons, the

external pumping of stationary, moving, and colliding large amplitude

solitons.

The manuscript is organized as follows: In Section II the mathematical

formulation is presented. Section III discusses the steady state eigenvalues

and large amplitude wavefunctions. In Section IV the time dependent

phonomena are presented. Section IV A introduces the numerical method,

Section Iv B deals with the standing waves, Section IV C treats the collisional
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properties, Section IV D is concerned with the pumping of a stationary

soliton, Section IV E discusses the pumping of a moving soliton, and

Section IV F treats the effect of external pumping during a collision.

Conclusions are presented in Section V. 



_____  _________________  • • •,

II. FORMULATION

In the present study one is interested in describing the space-time

(x,t) evolution of the total high frequency electric field E, which is

expected to exhibit oscillations in the Langmuir frequency range, This

field is described in terms of a modulational representation

E(x,t)=E(x,t)e~~
0)
pt+c.c. (1)

where the complex amplitude E is assumed to vary slowly in time, i.e.,

I aE/atI<<w~I E1 .

The lowest order nonlinear description of the plasma can be obtained

by using the two-fluid representation and separating in these equations

the appropriate effects into a slow and a fast time scale. The evolution

of the high frequency density 
~h 

is determined12 from

a 2 a 3T a ‘1
(2)

where n~ refers to the slowly varying density, e and m represent the electron

charge and mass, and Te is the electron temperature. It should be noted

that the dominant nonlinearity retained in Eq.(2) consists of the nonlinear

modification of the slowly varying density n
~. 

which must be determined

self-consistently from other considerations. Furthermore, all the important

single particle-field interactions (e.g. Landau damping, ion acceleration,

plasma heating) are neglected.

The electric field in Eq.(2) is determined from Poisson’s equation

- 4lIeflh+411P (3)
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in which the possibility of having external charge sources p is allowed .

The effect of these sources can equivalently be handled through the zero

order vacuum field E0 which is created by p, i.e., Eq.(3) can be rewritten

as

~~~~~ 
(E-E)= - 4lTenh (4)

The form of Eq. (4) is useful in eliminating 
~h 

out of the description,

thus yielding from Eq.(2)

- 3T 2 4ne2n
2jti~ -p -- E + —s .~~

— E + (w2 - 
R.)E = u~ E (5)pat m ax2 p m

where the external field is assumed to have a dependence E0=E0ex~(-iw~t)+c.c.

In arriving at Eq.(5) one makes explicit use of the slow time variation of

E in order to neglect the second time derivative.

In general, the evolution of n~, should be determined from the ion

acoustic wave equation with the effects of the ponderomotive force included

self-consistently 12 . Due to the large amplitude levels which some of these

fluctuations may attain, it is possible that even such an equation should be

appropriately modified to include nonlinear distortions in the propagation

~.haracteristics , as has been investigated by Nishikawaka, et al.
13 . However,

in the present study we wish to retain only the fundamental effect of non-

linear self-saturation of the ponderomotive force without introducing

additional complications. For this reason we restrict this investigation to

the effects associated with the simplified exponential nonlinearity mentioned

in Sec. I. This admittedly oversimplified description can be visualized by

representing the slow time evolution of the electron velocity v~ through

d a
(6)
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where the brackets refer to a time average over the fast 2ir/w~ scale, and

vh can be appropriately represented by the high frequency jitter velocity

<v~~~
’= (~~~)2 J~~J2 (7)

Using w~
2=41Te2n0/m gives Eq.(6) the form

d a J Ej ~m ~~~ V~, = - 

~ ~81Tn~~ 
(8)

thus suggesting that the slow time electron motion is governed by the

gradient of the slow pseudo-potential 4I~ = I E l 2/8nn0. Accordingly, the low

frequency electron density is expected to satisfy the Boltzmann expression

n
~ 

= no exp C- 41p/Te)

which contains the important self-saturation effect which is absent in the

usual cubic nonlinearity description of Langmuir solitons, i.e., the

expansion of Eq.(9) in the limit IEI2/81t
~o
Te~~

i
~ 

The underlying assumption

connected with the use of Eq.(9) is that the inertial effects associated

with the ions are negligible and that sufficient time elapses so that the

ion and electron densities balance each other out so as to cancel the

ambipolar potential.

An important point associated with the analytical description of

through Eq. (9) is that sufficient care must be exercised in eliminating

those spurious contributions contained in which do not cause changes

in density (e.g., a traveling plane wave). The correct explicit version

of Eq.(9) should read

= n0 exp [_ (IEI2 _fl)/(8wn0T~)J (10)
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where i~ denotes the spatially uniform term which must be subtracted from

I £ 12  to cancel the spurious contributions.

Wh en dealing with spatially periodic boundary conditions the quantity

“1 can be identified 5 with the k=0 component of the Fourier transform of

El2 , and can be calculated by such a method . However, when one wishes to

describe the generation of density cavities in a bounded slab, as is the

case of interest in this study, such a procedure does not prove useful . In

dealing with nonlinear density changes in a bounded model it must be

realized that the total number of plasma particles is strictly conserved.

This implies that if a cavity is formed at a certain position, then the

density must increase at another location within the bounded slab. If the

ion acoustic equation were to be used as a replacement for Eq.(9), then

this physical effect would manifest itself automatically by the formation of

density ridges or density bumps’2’’~’ surrounding the density cavities

produced by the ponderomotive force. In order to incorporate this type of

phenomenon into the description of n
~ 
through Eq.(lO) one must determine

the quantity TI self-consistently by requiring that

r L/ 2 1
J
dxn~ (x ,t) j 0 (11)

L -L/2

where t refers to the length of the plasma slab . With this additional

constraint the mathematical model of the problem is then complete.

The following scaled variables prove useful in describing the response

of the system defined by Eqs.(5), (10), and (11)
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mu2
z=( .~~2.)

h u’2 x

A -  _ _ _ _ _ _ _  - 12- 

(8rnT) 1
~
’2 

- 

(8lrn oTe)
1T2

E
p =  ° 

I
(8irn T ) 112

o e

with these variables the model equation takes the form

i }.- A + A + 1 - exp[- (1A12-c)] A = p (13)

For an unbounded system and in the absence of external pumping c = p = 0.

In such a limit one finds that Eq. (13) can be obtained from the Lagrangian

density where

= 1~~ (2 +tl_ tA (2 _ exp_ kI2)1 + 4~(A*~~ A - A A*) (14)

Using this Lagrangian density and the associated Hamil tonian density one finds

that the system has the following three invariants

I~ = Jdz lA I2

= ~~ Jdz(A*~~ A - A~~ A*) (15)

= Jdz[ IA l2+exp (_1A 12) - 1 - I~~I2

The physical meaning attached to these invariants are: I~ represents the

number of plasmons in the system, ‘2 corresponds to the total momentum

carried by these plasmons, and 13 measures the total energy of the system.

— -• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• 

~~~~~~~~~~~~~~~~~~~~~ ~
-
~~~~

•- 
A



-9-

The existence of these three invariants should be contrasted with the

behavior of known integrable systems1’2 such as the Korteweg Dc Vries equation

and the nonlinear Schrodinger equation with cubic nonlinearity, which have

been shown1’2 to possess an infinite number of invariants.

Due to the strict requirements imposed by the conservation of the

infinite set of invariants it is found that such systems support true soliton

solutioy~c . The terminology true soliton is used here to emphasize that such

entities not only represent nonlinear localized solutions, but in addition

their shape, plasmon number , momentum, and energy remain constant after

col liding with other such objects. The present investigation is concerned

with the properties and formation of soliton-like solutions of Eq.(13).

However, it should be realized that these large amplitude entities are not

true solitons since, as is shown in Sec. IV C, they can exchange number,

momentum, and energy during a collision. Nevertheless, it is found that the

magnitude of the exchange of these quantities during a collision is sufficiently

small that the terminology large amplitude soliton is quite appropriate in

describing the gross behavior of these objects.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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III. STEADY STATE BEHAVIOR

In the absence of external pumping (p=O) and in an unbounded medium

(c=O) Eq. (13) exhibits steady state soliton-like solutions in which the

collapsing effect of the nonlinearity is balanced by the dispersion arising

from the electron thermal pressure. These spatially localized solutions

have the form

A(z,’r) = a(~) exp[i(kz+wr)] (16)

~~= z - 2 k r

which transform Eq.(13) into

+ [1-exp(-a2) - a = 0 (17)

= w+k2

For a2<<1 Eq. (17) reduces in lowest order to the static Schrodinger equation

with the cubic nonlinearity often used in describing small amplitude Langmuir

sol itons. In this small amplitude limit the well-known exact solutions have

the form

a(~) = A sech(~/~)

= /2’/ JA 0~ , = ~~~~~~ (18)

Since the expressions given in Eq.(18) apply only in the limit A~.c<l, it

is of interest to determine the properties of the corresponding solutions

f~ arbitrary values of ~A0~
2(e.g., 1A 012:1.O) when the full exponential

nonlinearity is retained. To extract the large amplitude solutions from

Eq.(17) we solve the associated nonlinear eigenvalue problem numerically.

The scheme consists of using the Runge-Kutta procedure in which one specifies

_________________________________

-
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a = A and da/d~ = 0 at ~ = 0. One then guesses at an initial value for

and obtains the corresponding wavefunction. This wavefunction is tested

for its asymptotic behavior, i.e., whether or not it exhibits an exponential

decay for ~~>l. If the wavefunction does not exhibit the correct asymptotic

behavior the previous guess for is discarded and a new one is tried .

This procedure is found to converge rapidly when implemented on an interactive

mathematical computing system.

In Fig. 1 we exhibit the dependence of the nonlinear eigenvalue

(i.e., the frequency shift) on the peak amplitude of the localized field , A01 .

The solid curve corresponds to the full exponential nonlinearity, and the

dashed curve represents the prediction for the cubic nonlinearity, i.e.,

= JA ~~2/2. For the sake of comparison we include in Fig. 1 the broken line

curve which corresponds to the eigenvalue that is obtained if in addition to

the exponential nonlinearity one retains the second time derivative that is

explicitly dropped prior to arriving at Eq.(5). For the steady state case it

is a straightforward procedure to keep this contribution.

It is seen from Fig. 1 that the three different approximations give

essentially the same result for A012 <0.2, thus demarking the regime of

applicability of the cubic nonlinearity. For amplitudes such that 1A012 >0.5

it is observed that the saturation of the exponential nonlinearity causes a

significant deviation from the overestimate predicted by the cubic nonlinearity.

It is of interest to note that the modulational approximation itself produces

an underestimate of the actual frequency shift obtained when both the

exponential nonlinearity and the full second time derivative are retained.

From Fig. 1 it is seen that the modulational representation gives a reasonable

approximation (error < 10%) to the exact solution for 1A 012<l.2; for larger

values of 1A 012 the second derivative effect should be retained.
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Figure 2 shows the spatial dependence of the nonlinear wavefunctions

corresponding to the exponential nonlinearity. In this presentation the

wavefunctions are normalized to unity at ~ = 0 and the spatial scale used

is 1A 0k, i.e., it contains an explicit amplitude dependence. The reason

for using this variable as the abcissa is that it permits the easy identi-

fication of the deviation from the solutions to the cubic nonlinearity model

given in Eq.(l8); these solutions are represented by the innermost curve in

Fig. 2. The adjacent curves are the solutions to the exponential problem

for the values 1A012=0.25, 0.50, 1.00, and 2.0O,respectively. It is seen

from Fig. 2 that the large amplitude Langinuir solitons exhibit a larger

• spatial extent than is predicted by the cubic nonlinearity. In addition

the exponential wavefunctions are more rounded than the sech solutions near

• E=O. Although it is not shown in the presentation of Fig. 2, all wave-

functions are found to approach the sech solution at sufficiently large ~~,

as expected.

• To quantify the spatial broadening associated with the large amplitude

Langmuir solitons we have calculated an effective spatial width 6 defined

in complete analogy to the width A associated with the small amplitude

• solitons, i.e.,

= sech(l):0.65 (19)

• The usefulness of this definition becomes apparent when attempting to

• predict the amplitude of the large amplitude solitons which evolve out of

initial standing waves, as is shown in Sec. IV B.

Fig. 3 exhibits the dependence of the effective width 6 on 1A012 .

The ordinate is the normalized quantity 61A 01//i. For the cubic nonlinearity

• this quantity is strictly equal to unity and is represented in Fig. 3 by the

dashed line; the continuous curve corresponds to the exponential nonlinearity.
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• 
. From Fig. 3 one finds that the quantity 6 follows quite closely the

relationship

61A I
1 + 0.35~A 12 (20)• 0

which is used later on in Sec. IV B.

The enhanced broadening associated with the saturable nonlinearity

• should be considered when attempting to compare the relationship between

amplitude and width in an experiment involving localized fields. This is

• particularly relevant if separate independent measurements of width and

amplitude are not available and instead one wishes to infer one from the

• other. The enhanced broadening should also be kept in perspective when

attempting to explain the limiting width of localized fields in terms of

effective particle damping mechanisms alone.

Having determined the principal steady state properties of large

amplitude Langmuir solitons we next proceed to discuss some of the inter-

esting time dependent phenomena associated with these objects. 
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IV. TIME DEPENDENT PHENOMENA

A. Numerical Method

To investigate the time dependent phenomena we rewrite Eq.(l3) in

terms of finite differences (AT ,Az) and use the implicit time-averaged

Crank-Nicholson scheme 15 to obtain the matrix equation

a~ A7+1 + ~~
‘ A~

’ + y
~ A 7 1 = wr’ (21)

where A~ represents the scaled electric field amplitude at time t=mM and

at the spatial point z=jAz. In Eq.(21)

— — iAta. — — - 2 (Az) Z

in jAr jA r  in
= 1 + (Az)2 - 

.
~~

— F~ (22)

• 
~~~ = A~~

1 
- a~ (A~~ - 2A~

’4 + Art)

+ ~~ F~~
1 

- iAt p

where

= 1 - exp { ~[IAr~~
2 - ~

m
~
l
i ) (23)

Since Eq.(21) is an implicit relation from which A~ is to be determined,

one does not know a priori the value of F~ which is required to evaluate

To overcome this difficulty we use the following linear extrapolation

F ’ = 1 - exp { -H2A~
’’ - A~”~

2(2 - C~~] J • (24)

The spatially independent coefficient ~~ is determined from the

relationship L/ 2

14 = fdz exp { -[tA~
I2 - } (25)
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• . where 14 is a constant representing the initial number of plasma particles

present in the system.

To solve Eq.(2l) we utilize the well-known tn -diagonal scheme16 which

provides a simple and fast algorithm for determining the A~ provided that

the boundary conditions are known at each time step. Since in the present

study we consider both bounded and unbounded systems, it is necessary to

use slightly different methods in handling each of these.

• In the unbounded case we choose a priori a mesh that is sufficiently

long so that the relevant phenomena never have a chance to interact with

the numerical boundaries. For this case we set A = 0 at these boundaries and

legislate that c = 0 for all t , since there is no constraint on particle

conservation.

In the bounded case we introduce explicitly a density profile function

D(z) which appears through F in the form

1A 12F = l - D e x p f - [  
D~~~~~ 

(26)

The function D is suitably chosen so that it is essentially unity within

the system of interest and falls off sharply to zero near the boundaries.

This numerical procedure approximates the situation encountered in a

laboratory experiment. To handle the presence of the external pump field,

which is the main problem of interest in a bounded system, one needs to

consider only the vacuum electrostatic condition A=p at the boundary.

The inclusion of D(z) through Eq. (26) transforms the constraint

relation of Eq.(2S) into a transcendental equation for c. To obtain c

one then uses the method of successive approximations, where the zeroth

value is obtained by setting D=l.
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The previously described procedure has been imp] emented with the help

of the mathematical on-line computing system at the University of California,

Los Angeles.

B. Standing Waves

An interesting and physically important question is: How can a large

amplitude Langmuir soliton be generated spontaneously in a plasma device?

The answer is that there must be some initial amount of energy supplied to

the system and thereafter this energy m ust be allowed to relax nonlinearly

before it is dissipated by collisions or wave-particle interactions. If

the initial supply of energy is allowed to expand freely, as is the case

in an unbounded system, then the nonlinearity may not be sufficiently

strong to create the localization of the field. However, in a bounded

system a standing wave pattern is created and can in turn evolve into

intense localized fields. Therefore, it is of interest to investigate the

time evolution of standing waves in a bounded system.

To study the standing wave problem we consider a plasma slab such that

-50~z<50. At r=0 the scaled electric field is given by A(z)=A0(0)sin(2irz/lOO)

with A~(0)=0.l5. Fig. 4 shows the spatial dependence of the electric field

for various times in the interval 0~r~45. It is seen from Fig. 4 that early

in time the field energy density is relatively small and extends over the

length of the system. However, near the peaks of the standing wave the

ponderomotive force creates a density cavity (not shown) which begins to

localize (or trap) the electric field. This trapping leads to a rapid

• growth, which saturates at r 28. After the sharply localized fields are

created they develop nonlinear relaxation oscillations which eventually

• damp out.In the asymptotic state one obtains large amplitude (JA I2 ’~l .0)
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• localized fields whose spatial shape is found, upon detailed examination, to

correspond to the wavefunctions of large amplitude Langmuir solitons, which

are exhibited in Fig. 2.

The results shown in Fig. 4 demonstrate that the generation of localized

electric fields is not unique to the cubic nonlinearity. Furthermore, these

results suggest that such entities may be found in plasma devices in which

standing waves can be supported.

Figure 5 displays the time evolution of the peak value, 1A012 , of the

electric field associated with the localized entities shown in Fig. 4. It

is seen in Fig. 5 that nonlinear relaxation oscillations appear in the

process of forming the soliton-like structures, and that the amplitude of

these oscillations decreases while their period shortens as the

asymptotic state is reached. For the sake of comparison, Fig. 6 exhibits

the corresponding behavior for a much smaller initial amplitude of the

standing wave (A~(0)=O.063); it should be noted that in Fig. 6 the time

scale has been appropriately expanded. It is evident from Fig. 6 that the

relaxation oscillations exist also in the small amplitude limit, but their

period is much longer than in the large amplitude case.

The asymptotic amplitudes of the soliton-like structures that evolve

out of the standing waves can be predicted by using the conservation of

plasmon number invariant I~ given in Eq.(15). The value of this quantity is

£/2

Il J k o 0)I25mn2~~ (27)

-£/2

A0(o)12L
2

where £ refers to the length of the system and Ic to the wavenuinber of the

initial standing wave. The asymptotic state is given by two soliton-like

• • • -~ •- • • 
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structures each having peak amplitude A0. According to the small amplitude

soliton theory the asymptotic solutions are given by Eq.(l8), thus the

total plasmon number associated with these structures is

Il = 2 JdzIA J 2 sech2(~) (28)

I = 4k 12 A1 0

where the limit of integration has been extended to infinity because the

localized fields are far from the boundaries, as is seen in Fig. 4. Using

the relationship A =

(A0(o)j2&1A 01 = 

8/~ 
(29)

This prediction can be checked against the result shown in Fig. 6 which

corresponds to a lower amplitude soliton (i.e., jA0f2 zO .25). For this

case £=l00, A0
2(0)=0.063, thus predicting 1A 012=O.31, which is not a bad

estimate, since as can be seen from Fig. 6, it agrees with the peak of the

relaxation oscillations. However, this prediction does not quite agree

with the asymptotic value of 1A 0I2 0.25. This discrepancy arises due to

the enhanced width of the large amplitude solitons, discussed previously

in Sec. III , and can be accounted for as will be shown shortly.

The failure of the small amplitude soliton theory becomes apparent

when Eq.(29) is used to predict the asymptotic amplitude for the situation

shown in Fig. 5. For this case t=l00, A0
2(0)=0.l5 , thus Eq.(29) predicts

A0
2=l.76, which is far off from the observed value of A0

2
~l.O in Fig. 5.

In order to correctly predict the asymptotic value of A0
2 one must

take into consideration the enhanced width associated with the large
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amplitude solitons. This can be done by computing the asymptotic value of

12 using the large amplitude wavefunctions ~p and their effective width 6

11 = 2 I~~
2 ( z ) = 4 I A o I2 Jdz sech2 (

~
-) 

(30)

4IA~I~6

where the definition of 6 through Eq.(19) proves useful in approximating the

value of the required integral . Now equating Eqs.(27) and (30) yields

IA 12 6 — IA0(0)I2~
8 (31)

then taking Eq.(20) into consideration results in

IA (0)122.
A I (l+0.351A 12) = ° (32)o ° 8/~

This large amplitude relationship can be checked against the result of Fig. 5.

It predicts the value IA0 
2=0.99, which is represented by the dashed line in

Fig. 5, and is shown to be in excellent agreement with the time asymptotic

value of IA ~2
0

To correct the previously mentioned discrepancy between the small

amplitude soliton theory and the result of Pig. 6 one can use Eq.(32) in the

small 1A0I2 approximation, i.e.,

IA (0)122. 2
IA I2~ 

° (l-0.7IA 12) (33)o 8/~

and apply the method of successive approximations to the case of Fig. 6 to

yield
JA l 2 ~~o 3l) [ l—(0.7) (0.3l)]0 

(34)

IA 12 so .240

J 
. 

• -—• ••
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which is represented by the dashed line in Fig. 6, and again is seen to be in

excellent agreement with the asymptotic value.

It is worth noting in the context of these results that in a recent

laboratory experiment’7 it has been established that density cavities can be

produced by the ponderomotive force associated with standing waves. In

addition , in another unrelated experiment18 in a bounded plasma column it has

been found by spectroscopic measurements that intense electric fields in the

Langmuir frequency range can exist for anomalously long times after the

external energy sources have been turned off.

C. Collisions

Although the exponential nonlinearity supports spatially localized solutions

which can be generated from initial standing waves, it does not necessarily

follow that these objects are true solitons , since for this system only three

invariants are known, as is mentioned in Sec. II. To check this point we have

investigated the collisional properties of two objects whose initial wavefunctions

are given by the steady state solutions discussed in Sec. III , and whose

properties are summarized in Figs. 1-3.

The first case we consider is a spatially symmetric collision in which the

initial state consists of two large amplitude wavefunctions, each having :1
amplitude A0

2(0)=O.4, centered at z=±20, and with scaled wavenunibers k~~0.4,

respectively . The time evolution of the collision over the interval O<r<49.2

is shown in Fig . 7. To the naked eye the series of events depicted in Fig. 7

suggest that if these colliding objects are not true solitons , they are quite

close to being so. This behavior is remarkable, considering that at rr24.2,

I A f2 .1.4, hence the full saturation of the exponential term is sampled during
the collision .
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As a check of the numerical procedure it is found that during the entire

collision I~ remains constant to within one part in l0~ , while the total energy

13 varies by less than 0.5% of its pre-collisional value . Because of the

symmetry of this problem the momentum 12 is expected to vanish identically, and

numerically it does so (i.e., a few times lO~~). With this confidence on the

numerical procedure we can then probe for quantitative changes in the asymptotic

properties of the individual localized fields. It is found for the case of

Fig. 7 that the magnitude of the momentum 12 for each of the individual objects

decreases by 4.6% , hence showing that the exponential nonlinearity does cause

a distortion during the encounter. The distortion manifests itself by spreading

the plasmons away from the peak of the localized fields. Quantitatively the

spreading of the tail shows that the plasinon number I~ in the region where

1 A~~ is less than 0.1 of the peak value increases from the pre-collisional level
of 4.2% to the final value of 6.6%. This behavior corresponds to the creation

of a small uniform background component whose radiation is stimulated by the

c3llision .

Although the symmetric collision is a good test of the overall numerical

procedure, a significant amount of quantitative information is unavoidably

lost. A better method for obtaining a quantitative test of the distortions

produced by the collision is to consider an asymmetric initial state. The

outcome of such an encounter is shown in Fig . 8. The initial conditions for

this case consist of one large stationary wavefunction (k=0), centered at z=0,

and hav ing 1A0(0)12=0.S. The other smaller wavefunction is centered at z=-25 ,

with 1A0(0)12 =0.2, and has k=O.5 , thus moving toward the larger one.

Again , the constancy of the invariants was checked, and each was conserved to

0.1% or better.
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By examining Fig . 8 in detail it is found that these objects although

close to being solitons are not true solitons. The failure manifests itself

by a slow motion of the initially stationary object in the direction z<0 after

the collision, while the initially moving entity increases its amplitude as it

moves toward z>0. Hence, these objects transfer number, momentum , and energy

during the collision.

The initially moving object starts out with 36.8% of Ii, and asymptotically

it carries 42.0%, thus demonstrating that plasmons are extracted out of the

initially stationary structure. In the process of plasmon transfer the initially

moving entity increases its momentum by 2.8% while the stationary object recoils

by a corresponding amount . During the collision the energy 1
3 

of the larger

stationary object decreases from 0.19 to 0.15 , while that corresponding to the

smaller structure increases accordingly. The overall event is analogous to a

process in which a small object picks up mass from a larger one.

D. Pumping of a Stationary Soliton

Next we proceed to discuss the response of an initial small amplitude

soliton to an external uniform pump electric field. This situation is of

interest experimentally since it illustrates the possibility of enhancing the

amplitude of soliton structures which may be present in the plasma due to

natural causes not directly under the control of the experiinentalist. This

interaction can thus be used as a test procedure for uncovering the prior

existence of a soliton, or alternatively it may be used as a method for

generating large amplitude solitons .

The geometry considered consists of a bounded plasma slab whose unperturbed

density profile D is shown in Fig. 9. Initially a stationary (k=0) soliton of

peak amplitude A0
2(0)r0.1 is located at the center of the slab . At -t=0 the

external pump is suddenly turned on and its amplitude is given by p=O.4 exp(iO)

_ _ _ _ _ _ _ _ _  _ _  ~~~~~~~~~~~~~ =~~~~~~~~~~-- u~~~~_
~ 
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where 6 represents the initial relative phase between the soliton and the

pump. In general, under typical laboratory conditions 0 has a random value,

thus it is of interest to illustrate the two possible extreme cases which

may be encountered, i.e., 8=ii/4 and 3ir/4. The corresponding results are

shown in Fig. 10 for r=l.0; the initial pattern is included for comparison.

From Fig. 10 it is seen that for 0=ir/4 the pump causes a rapid transfer of

energy to the soliton , while for 0=3i~/4 the pump extracts energy out of the

soliton . Since the soliton pumping process is analogous to a driven resonator,

eventually the soliton locks to the phase of the pump and the amplitude grows

secularly in time regardless of the initial phase; however , this process takes

longer than the time used in the display of i~ig. 10.

Two additional features present in Fig. 10 worth mentioning are:

1) there is a uniform increase in the amplitude of the electric field over the

uniform part of the slab, and 2) there are two narrow spikes which appear at

the edge of the slab. The reason for the uniform increase in the electric

field is that the entire slab is being pumped near its plasma frequency, hence

the effective electric field is enhanced by a factor of c~~ over its vacuum

value, where c refers to the total effective dielectric of the slab (which

includes convection effects as well as resonance). The two spikes near the

edge of the slab consist of a signal launched by the sharp gradients near the

boundaries. This signal behaves as a mode-converted wave which propagates

to the interior of the slab due to the second derivative in Eq.(13), wh ich

represents the effect of thermal convection.

Figure 11 shows the time evolution of the peak amplitude of the soliton

when the external pumping is continued for a longer time (t=3.0). it is seen

in this figure that the amplitude exhibits the characteristic secular growth

expected from a resonantly driven oscillator. Accordingly, the soliton

_ _ _ _ _ _ _ _ _ _ _ _  
- • - ~~~~~~~~~~~~~~~~~~ - 
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amplitude reaches a rather large value over this interval . For this reason

it is more realistic to consider the effects produced by pumping over a short

interval such that 1A 12 <1 .0, as is the case for r<l.0 in Fig. 11.

An interesting procedure which is often employed in laboratory experi-

ments19 consists of pumping the plasma for a short time and observing the

subsequent redistribution of the electric field energy long after the source

is turned off. The corresponding situation is shown in Fig. 12, where we

exhibit the spatial dependence of 1A 1 2 for various times over the interval

0<r<20.0. In this case the pump is started with 0=0, p=O.4, and turned off

at r=l.O. Over this interval the pump increases the original plasmon number I~

in the system by a factor of 10; this value is found to remain constant after

• the pump is switched off to within 0.04%.

The sequence of events shown in Fig. 12 indicate that while the pump

is on, the amplitude of the initial soliton increases, the mode-converted

signals appear near the boundaries, and the uniform field builds-up, as

mentioned previously. After the pump is turned off the long scale RF energy

which has been injected into the plasma propagates toward the center of the slab

where the density cavity generated by the soliton is located. This density

cavity then traps a portion of the available energy, and causes the initially

small amplitude soliton to evolve into a large amplitude soliton, as is seen

at r=lO.O. This large amplitude entity subsequently exhibits relaxation oscil-

• lations as it attempts to attain the steady state relationship between amplitude

and width discussed in Sec. III. Finally, at rr2O.O one observes a pattern

consisting of a large amplitude soliton and a set of standing waves which are

nonlinearly distorted near their peaks. Consequently, this calculati3n shows

how a large amplitude soliton can evolve out of a small amplitude soliton when

the latter is stimulated by an external pump for a relatively short time interval.

L - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



To complement the spatial evolution shown in Fig. 12 we exhibit in Fig. 13

the time dependence of the peak value of the electric field in the slab. It is

seen in Fig. 13 that there is a short interval after turning on the pump (t=O)

during which the peak amplitude of the soliton is smaller than the pump

amplitude, hence the flat line portion of the graph. However, after this

short interval elapses one detects the rapid growth of the soliton , represented

by the sharp slope following the initial flat portion . The rapid growth of the

soliton disappears as soon as the pump is turned off (r=1.0) . After the pump is

removed the soliton peak exhibits a steady but much slower growth resulting

fro m the spatial convergence of the long scale RF energy into the density cavity.

Later in time (i-11.0) the peak amplitude develops relaxation oscillations

which drive the localized field toward the steady state large amplitude

solutions discussed in Sec. III.

E. Pumping of Moving Solitons

Having isolated the essential features associated with the external

pumping of a stationary soliton (k=0), it is of interest next to extract the

corresponding effects associated with moving solitons (k~0). In this case

the uniform external pump is capable of increasing the plasmon number and the

energy of the soliton , but it does not change the initial nonzero momentum.

Therefore it is of interest to inquire as to how the soliton rearranges the

surplt~s of number and energy, e.g., does it break up into a stationary and a

moving soliton?

To emphasize the relevant effects associated with the soliton motion

we first consider a rapidly moving soliton with wavenumber k.2.0, IA0(o)I2~0.5,

and initially (t=0) centered at z=20.0. Although this wavenumber leads to a

group velocity too large to justify the neglect of ion inertia, it nevertheless

• - •~~ •~~~ 
-- - -
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serves to illustrate the effect which is also present for slower solitons.

The complex pump amplitude is chosen as p=i(O.07); it is turned on at r=0.5,

and switched off at r=2.5. The corresponding space-time evolution of IA I2 is

shown in Fig. 14 for the interval O.5<r<lO.0.

It is seen in Fig. 14 that before the pump is turned on (t<2.O) the soliton

motion is as expected from the steady state solutions discussed in Sec. III,

i.e., it Consists of a pure translation of the smooth envelope with a speed

proportional to k; the smooth envelope is shown at i=0.5 in Fig. 14. The

first observed effect caused by the pump is the modulation of the initial

soliton envelope, as is seen at T=2.5 in Fig. 14. The envelope acquires a

modulational wavelength equal to the initial wavelength of the soliton

(i.e., 2ir/k). Simultaneously with the development of this spatial modulation

it is observed that the peak amplitude of the soliton grows (e.g. JA 0J2 1.O

at t=5.0); the plasmon number I~ increases by 58%. After the pump is turned off

it is found that the perturbed soliton does not break into a stationary soliton

• and a moving soliton. Instead, one observes that a wavepacket continues to

move to the right , and as it moves there is a sequential spiking of the electric

field. This spiking produces a rippling effect which moves back and forth within

the adjacent troughs inside the wavepacket.

Figure 15 exhibits the sequential spiking of the peak electric field

associated with the moving wavepacket. It should be noted that the peak value

eventually relaxes to a level 1A 012 l .O; however, the oscillations do not

disappear over the time observation. This behavior should be contrasted to

that of the stationary soliton , shown in Figs. 12, 13. The external pumping

of a stationary soliton is capable of generating a large amplitude soliton,

i.e., it transforms a small soliton into a large one. This transformation is

accomplished through relaxation oscillations which disappear quickly. In the

• _ _ _ _ _ _ _ _ _ _•  
- • •
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rapidly moving soliton case the pumping does not create a large amplitude

moving soliton, (i.e., one of the solutions of Sec. III) at least not over the

time of observation. Instead, the pump excites the periodic spiking of the

wavepacket which persists for a long time.

Figure 16 exhibits the effect of pumping on a slowly moving soliton

having initial values k=0.2, A0(o)J2 =o.5, and centered at z=20.0. The pump

behavior is chosen as in the rapidly moving case described previously. It is

seen in Fig. 16 that in this case the small amplitude soliton increases its

amplitude and experiences a small distortion in its initially smooth envelope.

The reason for the smaller distortion of the envelope is that the wavelength

in this case is much longer than that used in obtaining Fig. 14. The back and

forth rippling of the wavepacket is hardly noticeable in Fig. 16; however, the

associated spiking of the peak amplitude is evident in the oscillations shown

in Fig. 17. Again, it is observed in Fig. 17 that the maximum amplitude

saturates at a level jA0
l2~l.o, but the oscillations do not disappear over the

observation time (r<35.0). It is worth noting that in this case the plasmon

number is increased by 77%, thus indicating a better coupling to the external

pump than is provided by the faster moving soliton.

F. Pumping of Colliding Solitons

To complete the survey of soliton behavior in the presence of an external

pump , we next consider the effects produced by pumping while two solitons

collide with each other. The case presented corresponds to the same initial

conditions used in the asymmetric collision previously discussed in Sec. IV B.

Figure 18 displays the evolution of the collision over the interval

16.O< r c54.O. The behavior for r<l6.O is not shown; during this interval the

smaller soliton propagates toward the larger one, which is initially stationary
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and centered at z=0. The external pump is turned on at T=l6.0 with p=O.O05

and is switched off at r=32.0, just as the solitons begin to separate from

each other, i.e., pumping occurs while the solitons are interacting strongly

with each other.

It is seen from Fig. 18 that there are no major qualitative disruptions

in the scattering behavior already discussed in Sec. IV B. The most striking

change is associated with the distortion induced on the smaller moving soliton.

This distortion is seen in Fig. 18 in the interval 32.0cr<54.0 and consists of

the sequential spiking of the electric field, which was previously identified

in Sec. IV E as the dominant effect associated with the pumping of a single

moving soliton. The distortion manifests itself through amplitude oscillations

analogous to those shown in Fig . 17. Accordingly, the behavior observed

is quite similar to what one would obtain if a single noninteracting soliton

were considered. This behavior is remarkable considering that most of the

pumping occurs while the two solitons are interacting strongly.

Quantitatively, it is found that the external pumping increases the total

plasmon number I~ by 14% of the initial value; 68% of this increase is transferred

to the smaller moving soliton. Interestingly, it is found that the pumping

decreases the momentum 12 of the smaller moving soliton by 4.3%. This result

is to be contrasted with the collision without pumping in which the moving

soliton increases its momentum by 2.8%. The total momentum of the system

remains constant, as expected.
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V. CONCLUSIONS

The present study has isolated some of the experimentally interesting

properties of the large amplitude localized electric fields in the Langmuir

frequency range which are described by the nonlinear Schrodinger equation

with the full exponential nonlinearity retained. The steady state eigen-

values and the associated wavefunctions have been calculated and compared

against the well-known small amplitude soliton solutions. The principal

differences found are that the large amplitude solitons exhibit a larger

spatial extent and a smaller nonlinear frequency shift than is predicted

from the small amplitude theory.

The time dependent behavior of the large amplitude solitons has been

investigated in a bounded plasma slab. It is found that initial standing

waves evolve into the large amplitude steady state solutions while exhibiting

nonlinear relaxation oscillations. The observed amplitude of the time

asymptotic state has been shown to be in excellent agreement with the calcu-

lated values which use the nonlinear relationship between the width of the

steady state large amplitude solutions and their peak amplitude; the small

amplitude soliton theory is found to significantly overestimate the asymptotic

amplitudes.

The collisional behavior of the large amplitude solutions of the

exponential nonlinearity has been examined for both symmetric and asymmetric

cases. The striking feature is that these objects behave almost like true

solitons even though during the collision the saturation effect of the exponential

nonlinearity is sampled. The magnitude of the deviation from true soliton

behavior as gauged by the individual asymptotic changes in number, momentum,

and energy conservation is found to be less than 5%. Thus the terminology

• large amplitude Langmuir soliton is appropriate when referring to the gross

behavior of these entities.
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The external pumping of stationary, moving, and colliding large amplitude

solitons has been investigated. It is found that an initial stationary small

amplitude soliton can evolve into one of the stationary large amplitude solutions

after undergoing relaxation oscillations. A moving soliton is found to develop

a new type of nonlinear distortion which results in the periodic spiking of the

electric field inside the moving wavepacket. It is found that by pumping during

a collision no major distortions develop, and that the changes produced are

similar to those induced on individual noninteracting solitons.

Although the underlying model used in the present study to investigate

the properties of large amplitude Langniuir solitons neglects several important

effects (e.g., ion inertia, damping) it is expected that many of the general

features uncovered may carry over when these other interactions are included,

in particular when external pumping is present.
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FIGURE CAPTIONS

FIG. 1 Amplitude dependence of the scaled nonlinear frequency shift ~~~.

The solid curve corresponds to the exponential nonlinearity; the

dashed curve to the cubic nonlinearity. The broken line is the

result obtained if the second derivative is retained in addition

to the exponential nonlinearity.

FIG. 2 Spatial dependence of the normalized large amplitude wavefunctions.

The innermost curve represents the family of sech solutions (cubic

nonlinearity) while the adjacent curves are obtained for 1A 012 =O.25 ,

0.50, 1.00, and 2.00, respectively. Note the amplitude dependence

of the abcissa.

FIG. 3 Amplitude dependence of the effective spatial width 6 corresponding

to the steady state solutions with the full exponential nonlinearity

retained.

FIG. 4 Space-time evolution of initial standing waves into large amplitude

sol itons.

FIG. S Time dependence of the peak amplitude of the localized electric fields

generated by the standing waves of Fig. 5. The dashed line corresponds

to the analytic prediction which uses the effective width of the large

amplitude wavefunctions.

FIG. 6 Time dependence of the peak amplitude of the localized electric fields

generated by a standing wave having initial amplitude A0(0)~
2=0.063.

The small amplitude soliton theory predicts a time asymptotic value

of 0.31. The dashed line corresponds to the large amplitude theory.
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FIG. 7 Space-time evolution of the symmetric collision between two large

amplitude solutions initially centered at z=±20 with k= 0.4.

FIG. 8 Space-time evolution of the asymmetric collision between two initial

large amplitude solutions. The larger object is initially stationary

(k=0) and centered at z=0. The smaller moving solitun is initially

centered at z=-25 with k=0.5.

FIG. 9 Unperturbed density profile D used in the calculation of the pumping

of a stationary soliton.

FIG. 10 Spatial dependence of the total electric field after pumping with

8=ir/4 and 3r/4 for r=1.O. The initial soliton (r=O) is included .

FIG. 11 Time evolution of the peak amplitude of the total electric field

in the plasma slab during pumping.

FIG. 12 Space-time evolution of the pumping of an initial small amplitude

soliton located at the center of the plasma slab. The pump is

turned on at t=0 with p=O .4, and turned off at r=1.O.

FIG. 13 Time dependence of the peak amplitude of the total electric field

in the plasma slab corresponding to the evolution shown in Fig. 12.

FIG. 14 Effect of external pumping on a rapidly moving soliton initially

centered at z=-20, with k=2.O and A0(0)I2~0.5. The pump amplitude

is taken as p=i(0.07); it is turned on at T=0.5 and turned off at

rz2.5. 
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FIG. 15 Time dependence of the peak amplitude of a rapidly moving soliton

after being subjected to external pumping, as shown in Fig. 14. The

pump is turned on at t=O.5 and turned off at r=2.5.

FIG. 16 Effect of external pumping on a slowly moving soliton initially

centered at z=-20 , with k=0,2 and ~A0(O)I2 =O.5. The pump amplitude

is taken as p=i(0.07); it is turned on at r=O .5, and is turned

off at r=2.5.

FIG. 17 Time dependence of the peak amplitude of a slowly moving soliton

after being subjected to external pumping, as shown in Fig. 16.

The pump is turned on at r=0.5 and turned off at r 2.5.

FIG. 18 Effect of external pumping on a large amplitude soliton collision .

The collision in the absence of pumping is shown in Fig. 8. The

pump is taken as p=O .OOS; it is turned on at r=l6.O, and is turned

off at r=32.O.
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